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Abstract
Clearance of anogenital and oropharyngeal HPV infections is attributed primarily to a suc-

cessful adaptive immune response. To date, little attention has been paid to the potential

role of stochastic cell dynamics in the time it takes to clear an HPV infection. In this study,

we combine mechanistic mathematical models at the cellular level with epidemiological

data at the population level to disentangle the respective roles of immune capacity and cell

dynamics in the clearing mechanism. Our results suggest that chance—in form of the sto-

chastic dynamics of basal stem cells—plays a critical role in the elimination of HPV-infected

cell clones. In particular, we find that in immunocompetent adolescents with cervical HPV in-

fections, the immune response may contribute less than 20% to virus clearance—the rest is

taken care of by the stochastic proliferation dynamics in the basal layer. In HIV-negative in-

dividuals, the contribution of the immune response may be negligible.

Author Summary

Worldwide, 5% of all cancers are associated with the sexually transmitted human papillo-
mavirus (HPV). The most common cancer types attributed to HPV are cervical and anal
cancers, but HPV-related head and neck cancers are on the rise, too. Even though the life-
time risk of infection with HPV is as high as 80%, most infections clear spontaneously
within 1–2 years, and only a small fraction progress to cancer. In order to identify who is
at risk for HPV-related cancer, a better understanding of the underlying biology is of great
importance. While it is generally accepted that the immune system plays a key role in
HPV clearance, we investigate here a mechanism which could be equally important: the
stochastic division dynamics of stem cells in the infected tissues. Combining mechanistic
mathematical models at the cell-level with population-level data, we disentangle the con-
tributions from immune system and cellular dynamics in the clearance process. We find
that cellular stochasticity may play an even more important role than the immune system.
Our findings shed new light onto open questions in HPV immunobiology, and may influ-
ence the way we vaccinate and screen individuals at risk of HPV-related cancers.
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Introduction
Infection with the human papillomavirus (HPV) is responsible for a large fraction of anogenital
and oropharyngeal cancers in both women and men. Over 90% of cervical cancers are caused
by HPV infections, and up to 60% of squamous cell carcinomas of the vulva, vagina, anus and
penis are associated with high-risk types of HPV [1]. More recently, it has been shown that in-
fection with HPV also plays a critical role in the genesis of certain head and neck cancers, par-
ticularly in cancers of oropharynx and base of tongue [2]. The incidence of these cancers in
men has been increasing over the past decade, suggesting the emergence of a virus-related can-
cer epidemic [3].

Even though the lifetime risk of HPV infections is as high as 80% [4], most individuals clear
the virus within 1–2 years [5]. However, if infection with a high-risk type of HPV persists, the
viral genes can interfere with the cellular control mechanisms and trigger neoplastic changes,
which can eventually develop into an invasive carcinoma [6].

To date, several aspects of the HPV infection dynamics remain poorly understood [7, 8]. In
particular, the mechanisms of virus clearance are controversial [8]. Clearance of HPV infection
is usually attributed to an effective immune response, and the observation of longer clearance
times in immunocompromised individuals further corroborates this assumption [9]. On the
other hand, the fact that development of antibodies preventing future re-infection after clearing
of the virus (known as seroconversion) occurs only partially [10–14] suggests that mechanisms
other than an effective immune response may contribute to viral clearance.

One potential contributor in the clearing of HPV that has received little attention is chance
itself, or more precisely, the stochasticity of the stem cell dynamics in the infected epithelia.
Across different organs (both anogenital and oropharyngeal), oncogenic types of HPV prefer-
entially infect areas of stratified squamous epithelium (SSE), and these SSE are not just a static
backdrop to the unfolding infection process [2, 15]. They have a relatively fast turnover rate
and the entire thickness of the epithelium is renewed every few weeks. During the renewal pro-
cess, stem cell-like progenitor cells (hereafter denoted as S cells) in the lowest layer of the tissue
(the basal layer) produce commited daughter cells (denoted as D cells) that differentiate and
move upwards into the intermediate and superficial layers, and eventually get sloughed off into
the lumen [15], see Fig. 1. The critical role of the dynamic differentiation and maturation pro-
cess in the viral life cycle is well established [16]. However, the hypothesis that stochastic dy-
namics in the basal layer could contribute significantly to the clearing of new infections has not
been addressed elsewhere.

Until recently, the driving cellular processes in the basal layer were only poorly understood,
but novel lineage tracing techniques have provided valuable insight into the stochastic dynam-
ics of basal cells [17]. Several mouse studies have used fluorescent labeling to observe lineage
dynamics over time, and have concluded that while S cell division is prominently asymmetric
(yielding one S and one D cell), a small fraction of S cell divisions are symmetric, yielding either
two stem cells or two differentiated daughter cells [18, 19]. Considering that HPV infections
start with a small number of infected basal cells in the SSE [16], it seems plausible that these
stochastic division patterns in basal cells may have an impact on the persistence properties of
the infection.

To investigate the relevance of cellular proliferation patterns and tissue homeostasis on
HPV infection dynamics, we develop in this study a stochastic model of HPV infection in the
SSE. By explicitly accounting for the stochasticity in stem cell proliferation, as well as cytotoxic
T-cell mediated elimination of infected basal cells, we investigate the potential role of chance in
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the viral clearing process. Combining the model with a longitudinal data set of cervical HPV
infections, we provide evidence for the critical role of stochasticity in HPV clearance.

Methods

Model
Across affected anogenital and oropharyngeal sites, the dynamics of HPV infections are similar
in nature. There is a large overlap among HPV types found in lesions of different sites, and
HPV-16 is the most common type found in all HPV-related invasive cancers [20]. In addition,
the viral replication strategy is essentially the same across affected sites [21, 22]. On the other
hand, there are some organ-specific differences with respect to the biology of the affected strati-
fied squamous epithelia. In fact, cervical, anal and oropharyngeal infections are usually restrict-
ed to a confined metaplastic transformation zone that separates columnar and squamous
regions of the epithelium, whereas infections of e.g. the vulva, vagina and penis do not take
place in such a transformation zone [23, 24]. Nevertheless, the bottom-up renewal dynamics
(as explained below) of the affected epithelia are very similar, and the parametric model devel-
oped here can be applied to different tissue types by virtue of adjusting the relevant parameters,
such as density of stem cells in the basal layer and regeneration time of the epithelium.

Homeostasis of the SSE. In physiological equilibrium, SSE (Fig. 1A) are dynamic tissues,
and their entire thickness is renewed every few weeks. The renewal time ΔT is site-specific and
varies between 3–6 weeks in the cervix [22, 25] and 2–3 weeks in the oral mucosa [26]. The re-
generation is a bottom-up process as depicted in Fig. 1B, and the following dynamic model has
been proposed based on lineage-tracing experiments [18, 19] (Fig. 1B). Stem cell-like

Fig 1. Stratified squamous epithelium. A H&E stain of normal cervical SSE, with squamous epithelium separating dermis from lumen (source:
http://commons.wikimedia.org; work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license).B In the basal layer (bottom),
stem cells (solid circles) divide at rate λ: asymmetrically with probability 1 − 2r, and symmetrically with probability 2r. Differentiating daughter cells (empty
circles) leave the basal layer at rate Γ toward the intermediate layer where they further differentiate and mature. Eventually, the top layer gets sloughed off
into the lumen.

doi:10.1371/journal.pcbi.1004113.g001
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progenitor cells (S) in the basal layer divide at a rate λ, and during each division, there are three
possible outcomes: with probability 1 − 2r (where r� 1), S cells divide asymmetrically into
one S and one differentiated daughter cell (D); with probability 2r, the division is symmetric,
resulting in either two S or two D cells. Since space in the basal layer is limited, D cells leave the
basal layer at rate Γ, and move upwards into the intermediate layers. Once fully matured and
differentiated, D cells have reached the superficial layers, where they are eventually shed off to
make space for new cells. Mathematically, these dynamics are summarized as a two-type
branching process, see also Fig. 1B,

S!l
Sþ S with probability r

Sþ D with probability 1� 2r

Dþ D with probability r

D!G ;; ð1Þ

8>>><
>>>:

where ; signifies cell death [18, 27]. In homeostasis, the basal layer consists of a conserved frac-
tion ρ of S cells, which means that proliferation and migration rates satisfy the relationship
ρλ = Γ(1 − ρ). Since the S cells in (1) undergo a critical branching process, their progeny will
eventually go extinct (see also the discussion of S� cells below). However, since the basal layer
is not compartmentalized and there is a large pool of S cells, this is very unlikely to occur within
a human life time. In addition, it has been shown that there are regulatory mechanisms for
stem cell fate [19, 28], and it is conceivable that similar mechanisms prevent the total number
of S cells to fluctuate significantly. Finally, even though this model was originally developed
based on mouse experiments, it has since been corroborated in human SSE [29].

HPV infection dynamics. New HPV infections arise in the basal layer of the SSE: physical
ruptures in the tissue allow virions to reach the bottom layer of the SSE, where they infect resid-
ing S and D cells [16]. Due to the high turnover rate of SSE, non-dividing and upward moving
D cells are lost from the epithelium within a few weeks, and hence persistent infections require
the infection of S cells. Hereafter, we denote infected S and D cells by S� and D�, respectively.
Furthermore, we denote by nX(t) the number of cells of type X 2 {S, D, S�, D�} present at time
t. Since the viral count is kept at very low copy numbers (10–100) in the basal layer, and there
is only minimal viral gene expression [30], we assume that the host cell dynamics are not affect-
ed by the presence of the virus. In particular, it has been shown that HPV-infected cells only ac-
quire a selective growth advantage once the viral DNA has been integrated into the host DNA
[31], which occurs at later, symptomatic stages of the infection. Consequently, the dynamics of
infected cells in the early stages are still governed by (1), with S and D replaced by S� and D�,
respectively. From this it is easy to see that the dynamics of the S� cell population in the basal
layer are governed by the continuous-time critical branching process

S� !2rl
S� þ S� with probability 1=2;

; with probability 1=2:
ð2Þ

(

It follows from the theory of branching processes [32] that the probability an infected clone
(starting from one infected cell) survives until time t is

PðnS� ðtÞ > 0Þ ¼ 1

1þ rlt
: ð3Þ

In particular, the clone will die out with probability 1, though the time until this occurs has infi-
nite expected value.
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Immune response. Even though HPV is equipped with molecular mechanisms that facili-
tate immune evasion after infection, it is generally assumed that clearance of the virus is the re-
sult of a successful immune response [25, 33]. Initially, detection of the infection triggers an
innate immune response which targets the virions that are released at the surface, as well as in-
fected cells in the superficial layers. However, neither of these responses can permanently clear
the virus: elimination of basal cells require the presence of HPV-specific cytotoxic T-cells
which are recruited during an adaptive immune response [24]. To model the specific targeting
of infected basal cells, we need to introduce T cell mediated elimination of infected S� and D�

cells. For this purpose, we assume that the number of T cells recruited is proportional to the
number of infected cells in the basal layer, nS� + nD�. This implies that each infected cell is tar-
geted at a constant rate μ, referred to hereafter as the immune capacity,

S�; D� !m ;: ð4Þ
Of note, μ represents the effective immune capacity, accounting both for the strength of the
mounted immune response, and the likelihood of immune cells to detect and neutralize in-
fected basal cells. Finally, since the number of basal cells is assumed to be conserved on average,
the eliminated cell needs to be replaced. Therefore, elimination of an infected cell triggers pro-
liferation of an S cell with probability pS, or of a S� cell with probability pS� = 1 − pS, see Fig. 2.
The nature of these probabilities will be discussed in Results.

Replacement dynamics. Next, we describe the replacement dynamics that ensue after
elimination of infected basal cells. The underlying premise for the following replacement rules
is conservation (on average) of basal stem cells. While there is, to our knowledge, no direct ex-
perimental evidence for conservation of basal stem cells during viral clearance, it has been
shown that stem cell fate can change temporarily and reversibly after perturbation [19], see
also [28]. With this in mind, and as illustrated in Fig. 2A, we assume that D� cell elimination
triggers division of a stem cell (infected or uninfected) in asymmetric or symmetric fashion,
identically to the spontaneous division events depicted in Fig. 1B. On the other hand, S� cell
elimination is assumed to trigger a symmetric division, resulting in two identical S copies if an
S cell is triggered, and into two S� copies if an S� cell is prompted to divide (Fig. 2B). In fact, if
S� division were to trigger asymmetric division of either an S or an S� cell, this would violate
our assumption of epithelial cell homeostasis because the total number of stem cells in the tis-
sue would not be conserved over time.

Complete model. In summary, the infection dynamics in the basal layer are described by a
4-dimensional continuous-time Markov process with variables S, S�, D and D�. The process is
governed by the spontaneous division and migration events as in Fig. 1B, in conjunction with
the immune-mediated events depicted in Fig. 2. Furthermore, we shall assume that each infec-
tion starts with an inoculum of n0 infected stem cells S� at time t = 0.

Data
Ethics statement. The longitudinal REACH data set [34] used in this study is publicly

available and distributed by Sociometrics Corporation (http://www.socio.com/reachdata.php).
Access to the non-sensitive part of the data (standard data) used in our study was granted by
Sciometrics Corporation without IRB or other ethics approval.

Data description and exclusion criteria. To calibrate the models we used longitudinal in-
fection data from The Reaching for Excellence in Adolescent Care and Health (REACH) project
of the Adolescent Medicine HIV/AIDS Research Network [34]. Between 1996–2000, the
REACH study followed 578 HIV-infected and HIV-uninfected adolescents (ages 13–18) in 13
US cites. A detailed description of the study is found in [35], see also [36]. In particular, the 411
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female participants in the cohort were tested for HPV every 6 months, and we extracted the
corresponding longitudinal data set from the master file. Not all data points were suitable for
our purposes, so we made exclusions according to the following criteria: 31 participants did
not test positive for HPV during the study; 31 participants had less than 2 valid HPV tests; 15
participants had less than one valid HPV test after the first HPV positive test; 6 participants
had missing visit dates; 15 participants had incomplete information about the HPV subtypes.
Among the remaining 313 females included in our analysis, 212 were HIV-positive, and 121
were HIV-negative. None of the participants changed HIV-status during the study period.

Results

Estimates from the parametric data analysis
The first objective was to combine the model introduced inMethods with the REACH data set
to obtain estimates of the proliferation dynamics, the immune capacity, and the number of ini-
tially infected basal cells. For this purpose, we made the assumption of a well-mixed basal layer:
upon removal of an infected cell, division of an S cell occurs with probability pS = nS/(nS + nS�),
and division of an S� cell with probability pS� = nS�/(nS + nS�). In other words, we assumed that
the spatial arrangement of cells in the 2D basal layer can be ignored (the opposite end of the
spectrum—a spatially clustered population of infected cells—is discussed below). Since the rel-
ative size of the infected population compared to the entire basal layer is small throughout the
infection, nS � nS�, we can approximate pS � 1 and pS� � 0. As outlined in section 2 in S1
Text, it follows that the S� cell dynamics reduce to a subcritical branching process,

S�!
S� þ S� at rate lr;

; at rate lr þ m:
ð5Þ

(

Fig 2. Replacement dynamics. (A) T-cell elimination of an infected daughter cell (D*) triggers division of an S or S* cell with probabilities ps and ps*,
respectively. The division event is identical to spontaneous division in Fig. 1B. (B) T-cell elimination of an infected stem cell S* triggers division of an S or S*
cell. However, as required by homeostatic equilibrium of the stem cell compartment (on average), the division is assumed to yield two identical stem cells,
see text for details.

doi:10.1371/journal.pcbi.1004113.g002
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The probability of survival to time t for this process is, according to results in [32],

P nS� ðtÞ > 0ð Þ ¼ 1

1þ lr þ m
m

emt � 1ð Þ
: ð6Þ

In particular, addition of the immune capacity transforms the* 1/t decay in (3) into an
exponential decay.

Next, we used the longitudinal HPV data from the REACH study to infer the model param-
eters via maximum likelihood estimation (MLE). Thereby, we faced the issue of non-identifia-
bility of the model, a common problem in statistical inference. To understand where these
issues arise, we first consider the probability density function f for the persistence time of the
infection (see section 3 in S1 Text for its derivation)

f ðtÞ ¼

n0ðlrÞn0 tn0�1

1þ lrtð Þn0þ1 ; m ¼ 0;

n0A
n0memt emt � 1ð Þn0�1

1þ A emt � 1ð Þð Þn0þ1 ; m > 0;

ð7Þ

8>>>><
>>>>:

where A� (λr + μ)/μ, and n0 is the initial number of infected stem cells. From (7) we see that
the values of λ and r cannot by inferred individually, and the best we can do is infer their prod-
uct, α� λr. Even though there are no further apparent identifiability issues, we found that for
n0 large enough, the density (7) only depends on the ratio α/n0 (see section 4 in S1 Text). As a
consequence, α and n0 cannot be inferred individually, and we perform the inference over μ
and n0 for fixed values of α, across a prior range of biologically meaningful values α 2 [0.01,
0.25] d−1(see section 5 in S1 Text for a justification of this range).

In addition to the identifiability issues, the MLE required the derivation of a non-standard
likelihood function that takes into account the different combinations of data types: infections
were either present at the time of the first visit (prevalent infections), or they were initiated
after the first visit (incident infections); some individuals were lost to follow-up before clearing
the virus (right-censoring), and both the time of initiation and the time of clearance were only
determined up to the between-visit intervals (interval-censoring). The derivation of the corre-
sponding likelihood function is found in section 3 in S1 Text.

A final comment regarding parameter inference concerns the interpretation of negative test
results. In fact, it has been shown that longitudinal HPV studies bear a significant amount of
misclassifications due to short-term variation [37], and that apparently cleared infections can
reappear after variable amounts of time [38, 39]. The time before reappearance of seemingly
cleared infections could be interpreted as a latency period during which the infection tempo-
rarily regresses to subdetection levels. However, molecular evidence for this latency mechanism
has so far only been established in animal models [40]. Therefore, we decided to interpret the
first of two consecutive negative test results as the time of clearance of the infection.

The inference results are summarized in Fig. 3A-B. In what follows, the maximum likeli-
hood estimates are denoted by a hat (^) on the parameter name, and subscripts (−) and (+) are
used to refer to the HIV-negative and HIV-positive cohorts, respectively. As explained above,
the number of initially infected cells n0 is a linear function of α, which varies over the prior
range [0.01, 0.25]. The inferred ranges for the initial number of infected cells are n̂0;−ðαÞ 2 [5,

80] in the HIV-negative cohort, and n̂0;þðαÞ 2 [5, 120] in the HIV-positive cohort, see Fig. 3A.

Across the prior range of α, the inferred number of initially infected cells is slightly higher (but
of the same order of magnitude) in HIV-positive compared to HIV-negative individuals:

HPV Clearance Dynamics
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Fig 3. Parameter inference and clearance time distributions. A, BMLE inference for the initial number of
infected cells n0 and immune capacity μ for the HIV-negative and HIV-positive cohorts, over the prior range of
α. Estimators are denoted by a (^) symbol. Due to identifiability issues (see text), the estimators n̂0 are linear
functions of α, whereas the estimators m̂ are constant over the prior range of α. The n̂0 estimates are similar
between the HIV-negative and HIV-positive cohorts (A), but there is a 100-fold difference for the m̂ estimates

HPV Clearance Dynamics
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n̂0;þðαÞ > n̂0;−ðαÞ, for all α. To our knowledge, there is no experimental data that would allow

us to assess the validity of these model predictions. Regarding the immune capacity μ, we find a
stark difference between the cohorts: the estimated capacity m̂� in the HIV-negative cohort

ðm̂� ¼ 1:4 � 10�3d�1Þ is two orders of magnitude larger than the estimated capacity m̂þ in the

HIV-positive cohort ðm̂þ ¼ 3 � 10�3d�1Þ, see Fig. 3B. In particular, the estimates m̂þ and m̂� are
constant over the prior range of α.

Using the inferred parameter values m̂þ and m̂� for the immune capacity, and the inferred
ranges n̂0;−ðαÞ and n̂0;þðαÞ for the number of initial cells, we then derived the parametric clear-

ance time distributions according to (7), see Fig. 3C. Since the clearance time distributions
were found to be insensitive to α over the prior range (see section 6 in Text SI), the distribution
in Fig. 3C is only shown for an intermediate value of α = 0.14. Due to the reduced immune ca-
pacity in the HIV-positive cohort, its median clearance time is considerably larger (689 days)
than the median time in the HIV-negative cohort (340 days).

Stochasticity vs immune response
The main goal of this study was to assess the relative roles of stochastic cell dynamics and im-
mune response in the process of HPV clearance. Therefore, we compared the model-based per-
sistence distributions for varying immune capacities μ. As shown in Fig. 4A, the median time
to clearance is a decreasing function of μ, and the distributions become more localized with in-
creasing μ. However, comparing the distributions for μ = 0 and m=m̂� ¼ 1 (where m ¼ m̂� is the
estimated immune capacity of HIV-negative individuals), the contribution of the immune re-
sponse appears to be small in comparison to the contribution of the stochastic cell dynamics
(compare the box plots for μ = 0 and m=m̂� ¼ 1 in Fig. 4A). This is particularly clear when plot-
ting the clearance probability as a function of time as shown in Fig. 4B. In particular, compar-
ing the (m=m̂� ¼ 0)-curve with the (m=m̂� ¼ 1)-curve after 2 years, the clearance probability
without immune response (0.66) is only* 17% smaller than the clearance probability with
normal immune capacity (0.79). In other words, the stochastic dynamics contribute to as much
as* 83% of the viral clearing mechanism in healthy individuals, and the contribution from
the immune system is comparatively small.

Space and the impact of clustering
The subcritical branching process model above was derived under the assumption of a well-
mixed basal layer where infected cells are surrounded primarily by susceptible cells. In this situ-
ation, elimination of an infected cell prompts division of an S cell with high probability, justify-
ing the approximation pS = 1 − pS� = 1. As a consequence, the persistence distribution could be
derived analytically (6), rendering the model amenable to MLE inference. To assess whether
the ensuing results were an artifact of the well-mixing assumption, we developed the following
alternative model that takes into account the spatial clustering of infected cells.

If we assume that the initial cell population is subject to tight clustering, then radial symme-
try implies growth in the form of a radially expanding disk in the basal layer. That is, all the in-
fected cells are inside the disk, whereas the outside is populated only by uninfected cells. Since
the number of D� cells is roughly proportional to the number of S� cells (see section 2.2 in Text

(B). C The parametric clearance time distributions for both cohorts are derived using equation (7) and the
estimates from panels A and B. The distributions are insensitive to the choice of α, see section 6 in Text SI
(plots shown for α = 0.14). The band inside the box is the median, the bottom and top of the box are 1st and
3rd quartile, respectively, and the whiskers correspond to the 5th and 95th percentiles, respectively.

doi:10.1371/journal.pcbi.1004113.g003

HPV Clearance Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004113 March 13, 2015 9 / 16



www.manaraa.com

SI), the disk radius is proportional to
ffiffiffiffiffiffi
nS�

p
. Accordingly, whenever an infected cell in the interi-

or of the disk is eliminated by a T-cell, the probability to trigger an S cell division is given by

the ratio of disk circumference to disk area: pS ¼ min 1=
ffiffiffiffiffiffi
nS�

p
; 1

� �
and pS� = 1 − pS. Under

these assumptions, the S� cell dynamics are now decoupled from the S cell dynamics, but they
still depend on the D� cell dynamics, see also section 2 in S1 Text for details.

Fig 4. Immune capacity in the branching processmodel. A The model-derived distribution of the
clearance time is shown as a function of varying immune capacity μ (note that m̂� corresponds to the immune
capacity of HIV-negative individuals). The box-and-whisker plots correspond to the 5th, 25th, 50th, 75th and
95th percentiles, see caption of Fig. 3 for details.B The clearance probability as a function of time is shown
for different levels of immune capacity.

doi:10.1371/journal.pcbi.1004113.g004

HPV Clearance Dynamics
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Since closed-form expressions for the clearance time distributions are out of reach for this
model, even with the approximation, we resorted to simulations. As in Fig. 4A for the
well-mixed model, we investigated the impact of increasing immune capacity μ on the clear-
ance time distribution in Fig. 5A. We make the following observations. First, time to clearance
is generally longer in the branching process model: the three dotted horizontal lines correspond

Fig 5. Immune capacity in the spatial model. A The model-derived clearance time distribution is shown as
a function of varying immune capacity μ for the spatial model. The box-and-whisker plots correspond to the
5th, 25th, 50th, 75th and 95th percentiles, see capture of Fig. 3. The dotted lines are the three quartiles from
m ¼ m̂� in Fig. 4A. B The clearance probability as a function of time is shown for different levels of immune
capacity. All results in this figure are estimates based on 1000 simulations per μ-value.

doi:10.1371/journal.pcbi.1004113.g005

HPV Clearance Dynamics
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to the three quartiles for the ðm=m̂� ¼ 1Þ-distribution in Fig. 4. Only for the ðm=m̂� ¼ 8Þ-distri-
bution, which corresponds to an 8-fold increase in immune capacity, are all three quartiles of
the spatial model below the corresponding quartiles of the branching process model. Second,
the impact of the immune capacity on the clearance time for the clustered model is even weaker
than in the well-mixed model. Whereas the well-mixed model yields a decrease in median time
to clearance for increasing μ, small μ values yield a slight increase in median clearance time for
the spatial version. This is due to the fact that, in contrast to the branching process model, elim-
ination of an infected cell can trigger division of an S� cell (with probability pS� > 0), therefore
compensating for the loss of the infected cell and delaying clearance. The relative insensitivity
of the persistence time distribution to μ is further illustrated in Fig. 5B, where we observe that
the clearance probability is only slightly increased for small μ values. Finally, since the prior es-
timates of several model parameters have a relatively large interval of uncertainty (see section 5
in S1 Text), we performed a combined sensitivity analysis. By means of a Monte-Carlo simula-
tion (with the parameters r, α, ρ and μ drawn from their prior ranges), we computed the corre-
sponding persistence time distribution, and found that it did not substantially differ from the
fixed parameter distribution (see section 7 in S1 Text for details).

Discussion
Clearance of anogenital and oropharyngeal HPV infections has primarily been attributed to a
successful adaptive immune response. To date, little attention has been paid to the potential
role of homeostatic cell dynamics in clearing HPV infections. In this study, we combined
mechanistic mathematical models at the cellular level with epidemiological data at the popula-
tion level to disentangle the respective roles of immune capacity and cell dynamics in the clear-
ing mechanism. Our results suggest that chance—in form of the stochastic dynamics of basal
stem cells—plays a critical role in the elimination of HPV-infected cell clones. In particular, we
found that in individuals with normal immune capacity (HIV-negative cohort), the immune
response may contribute to less than 20% of the clearing task overall—the rest is taken care of
by the random succession of symmetric and asymmetric stem cell divisions. Furthermore, in
immunocompromised individuals (HIV-positive cohort) the contribution of the immune re-
sponse is likely to be negligible.

Based on our results, we may be able to shed new light onto questions currently debated in
the literature. First, in view of the high prevalence of HPV infections and the relatively small
risk of persistent infections that eventually lead to malignant disease, the identification of pre-
dictive markers for persistence would be valuable [8]. However, if stochasticity does indeed
play a key role in viral clearance, and if the major difference between individuals who clear ef-
fectively and individuals who develop persistent infections is largely a matter of chance, then
there may not be any predictive markers to discover. Hence, we may want to rephrase the ques-
tion, and ask if there is a way of modulating the cellular dynamics to achieve an increase in the
clearance probability. Our results suggests that by increasing either the probability of a sym-
metric division (r) or the proliferation frequency (λ) through a locally administered drug, time
to clearance and risk of progression could be substantially reduced.

Second, the suggested clearing mechanism could provide an alternative explanation for the
correlation between long-term use of combined oral contraceptives and increased risk of per-
sistent infections and cervical cancer [41]. Since estrogen stimulates [42] and progesterone in-
hibits [43] epithelial proliferation, it seems plausible that a decrease in cervical proliferation
could be caused directly via increased progesterone levels, and indirectly via loss of the estro-
genic mid-cycle peak. The resulting decrease in proliferation (smaller λ) would imply an in-
crease in time to clearance and a higher risk of progression to cancer. While the same
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reasoning would imply an increased risk of cervical cancer in progestin-only users, the effect of
progestin-only contraceptives on HPV persistence and cervical cancer development is less con-
sistent in the literature [44, 45]. This highlights the need for future research into the influence
of sex steroids on the natural history of oncogenic HPV infection.

Finally, the suggested model of chance-driven clearance is interesting in view of the ongoing
debate about viral latency [46–48]. To date, the existence of latent infections has been demon-
strated in animal models, and it is assumed to occur in HPV infections as well. The current the-
ory of latency is based on the assumption that the virus stays present inside long-lived basal
stem cells [48]. But while the notion of such long-lived, asymmetrically dividing and slow-cy-
cling stem cells is consistent with a theory of epithelial homeostasis developed in the 1970’s
[49], it is not aligned with the new paradigm that is based on fast-cycling stem cells that divide
both asymmetrically and symmetrically [18, 19, 29]. According to our model, which is based
on this more recent theory of homeostasis, viral latency is again a stochastic phenomenon and
occurs if the number of infected cells becomes very small (latent period) before growing back
to a detectable size. A more thorough discussion of the latency issue will be the subject of
future work.

While population-level models of HPV transmission and progression are commonly used
by epidemiologists and health economists, only few groups have developed mathematical mod-
els of HPV infection at the tissue level. In two recent studies [50, 51], deterministic (partial) dif-
ferential equation models were used to study evolutionary and ecological aspects of HPV
infections and competition between coexisting HPV types. To our knowledge, we are the first
to develop a stochastic model of HPV infection that couples stem cell dynamics with viral in-
fection and immune response. In addition, the methods introduced here provide a useful tool
in the parametric analysis of longitudinal data sets that contain both prevalent (present at
study begin) and incident (initiation after study begin) infections, as well as right-censoring
(study exit before viral clearance) and interval-censoring (duration of infection only known up
to an interval). In fact, 70% of the individuals in the analyzed REACH data set had an unknown
time of initiation, rendering conventional nonparametric approaches problematic (see section
1 in S1 Text for details). Thanks to the mechanistic models introduced and analyzed in this
study, we were able to account for the unknown time lapse between infection initiation and
study entry. Finally, the approach employed in this study may prove useful in other situations.
In fact, mathematical models at the tissue-level are often difficult to parametrize because sam-
ple sizes in pathology studies are generally small and exhibit large between-patient variation.
By combining longitudinal population-level data with cell-level mechanistic models as done in
this study, insights can be gained across the scales.

Every model comes with its limitations. First, it is known that there can be time-lags be-
tween inoculation and productive infection [22]. Since these lag times vary widely among indi-
viduals, and since we wanted to avoid adding to the complexity of the model, we set the
incubation period to zero. Second, since infected cells acquire a selective growth advantage
only at later, symptomatic stages of the infection [31], we assumed that the presence of viral
DNA did not alter the proliferation rates of infected stem cells. In addition, there is, to our
knowledge, no experimental evidence regarding HPV-mediated modulation of symmetric and
asymmetric division patterns in infected tissues. Third, we assumed that the interactions be-
tween virus and immune system are independent of the specific HPV strains, and that there
are no synergistic or competitive effects among co-infecting types, see also [51]. Since we be-
lieve that adding these more subtle aspects would not change the main conclusion of the im-
portance of stochasticity, we did not incorporate them into the current model. However, we
plan to address these issues in future work. Fourth, a more realistic alternative to the clustered
model version is provided by explicitly spatial models with lattice-based voter dynamics [52,
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53]. Such a spatial model extension is subject of ongoing work. Fifth, even though the stratified
squamous epithelia at different anogenital and oropharyngeal sites affected by HPV are quali-
tatively similar, we parametrized our model for cervical infections, and our insights regarding
the role of stochastic stem cell proliferation in viral clearance may not apply to other organs. Fi-
nally, our model predicts extinction of infection with probability 1 due to the subcritical nature
of the process. This is not in contradiction with the observation that a small fraction of infec-
tions persist and progress. In fact, progression from HPV infection to sustained neoplastic
growth is associated with cellular changes triggered by the viral genome. These transformations
are themselves stochastic processes, and hence progression only takes place in the small group
of individuals where the oncogenic transformation takes place before extinction of the
infected population.

Supporting Information
S1 Text. Supporting Information to Manuscript. Contains the following sections: 1. Non-
parametric persistence estimators; 2. Model details; 3. MLE for branching process; 4. Identifia-
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(PDF)
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